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Part 1: Portfolio
int c [6] [6]; // definition of character array
#define minimum(x,y) ((x) < (y) ? (x): (y))           // define minimum() to get the smaller number

int main ()

{

            int i, j, k, counter, track; // counter and track are also defined

            char x [] = "11001"; // initialization of the binary values for x
            char y [] = "01101"; // k[] – columns from table Y

            k = strlen(x); // both j and k are presumed to be of the same length
           for (i=0; i<=k;i++)

            d[0][i] = i;      // iteration
            for (j=0; j<=k;j++)

            d[j] [0] = j;

            for (j=1; j<=k; j++)    // inner loop
            {

                        for (i=1; i<=k; i++)

                        {

                                    if(x[i-1] == y[j-1])


A                                    {

                                                track = 0;

                                    }

                                    else

                                    {

                                                track = 1;

                                    }

                                    counter = minimum((d[i-1] [j]+1), (d[i][j-1] +1)); // store the minimum value
                                    d[i] [j] = minimum (counter, (d [i-1] [j-1] +track)); // comparing it with the counter
                        }

            }


cout<<” The minimum value is:” <<d [k] [k]

            return 0;

}// end of the program 
The value d[k] [k] = minimum value will be 0, 2, and 1 respectively. Therefore, the total Difference = ∑ minimum value= 0 + 2 +1. If there are two images X and Y are not the same. Now we are considering the distance between the table X and Y based on row by row basis. Therefore, the pseudocode for dynamic programming can be defined as indicated below. Dynamic programming is useful where there are problems that can be divided into similar sub-problems so as their outcomes can be reused, In this scenario for the problem under consideration, this algorithm has been used for optimization in order to achieve the best solution. 
In this example, the following can be noted.

The problem should be able to be divided into sub-problems 

An optimum solution can be achieved using an optimal solution for sub problems (Nerdy, 2016). There is application of memorization in dynamic algorithm.

This problem is based on the application of black and white images and it is assumed that each image is of in 2-D array, comprising of 2 possible values that is 0 or 1. In this case, 0 represent black whereas 1 represent white. Therefore, this 2-dimensional grid with 0 and 1 values comprises of a 2 dimensional black as well as white image. It is worth to note that every row of this image is basically a 1-dimensional int array, with 0s and 1s. Hence, there is a requirement of defining how to measure the difference that exists between the strings that comprises of 0s and 1s as it has been captured in our solution in every row (Moon, 2012). The whole algorithm is comparing one image with another using dynamic programming algorithm. This is known t be very fast and elegant scheme in solving this kind of a problem (Prateek, nd.).
Part 2(a) Pseudocode

#define minimum (x, y) ((x) < (y)? (x): (y))       // minimum function

int d [6][6];

int MAX_SIZE = 6; // the length of the string defined as constant
void comImage(int x[][], int y[][],  int thresh){ // function declaration
   int i, j, k, a, b, c;

   int d[j][k];              // string (character array for both x and y in each row - [6] [6]

   int sum Difference =0;     // initialization of sum
   for (int r=0 ; r<i ;r++){         // iterations of i
       for (int a=0; a < j; a++)    // iterations of all column in X
       {

           for (int b=0 ; b < k ;b++)          // iterations of all columns in y
           {

               d[a][b]=6;  // based on sample table x and y (or string length for each string) 
               if((a-1)>=0 && (b-1)>=0)

               {

                   if(x[r][a] ==y[r][b]]) // Compare values - when x and y have same value

                   {

                       d[a][b] = d[a-1] [b-1]; // showing that there is no change
                   }

                   else

                   {

                       d[a][b] = d[a-1] [b-1] +1; 

                   }

               }

               if (a-1 >= 0)

               {

                   d[a][b] = minimum(d[a][b], d[a-1] [b]+1); // comparing it with the previous 2 D value
               }

               if (b-1 >= 0)

               {

                   d[a][b] = minimum(d[a][b], d[a][b-1] +1);

               }

           }

       }

       int minimumvalue =6;

       for (int c=0; c < k ; c++)

       {

           minimumvalue =minimum(d[j-1] [c],minimumvalue);

       }

       sum Difference += minimumvalue;
   }

   if (sum Difference >thresh)

   {

       count<<" it is different";

   }

   else

   {

       cout<<"similar";

   }

}
In order to achieve the optimum solution, comparison of X1 and Y1 is done, whereby X1 is the first row in for the image X, whereas Y1 is the first row for image Y. The next comparison in this case is based on X2 and Y2, which compare the second row of image X and image Y. For this particular example, the first row of both image X1 and image Y1 has been initialized with comprising of both black and white elements, which=00110 as captured in the pseudocode. 

Implementation of this pseudocode shows that in the D array matrix of 2 dimension, the minimum number in the bottom row is the minimal mismatch for this row. In this case, this value has been assigned in minValue, and this number clearly shows how different is row X1 from row X2. After this comparison has been done, the repetition for all rows and the total Difference is given by minValue in our solution. As a result of this, the algorithms provide a comparison of the total difference to a threshold value that is referred to as thresh. As shown in our solution, when the total threshold is above, the declaration of the images is done differently, else their declaration is done in a similar way.

Part 2 (b): Optimality
The concept of optimality in the dynamic programming is based on the assumption that optimal solutions can be used in smaller sub-problems we can make use of optimal solutions to the smaller sub-problems as long as it produces the optimal solutions to the larger ones (Reveillac, 2015). As compared to divide and conquer e.g. merge sort or quick sort) it is in order when the sub problems overlap, as long as there are a number of them (Anand, n.d). In comparing the similarity of the given image from this example, solutions to the sub problems row by row criteria have been established through comparison of one string from X and another string from Y; then we traverse it to all given rows (Akian &Challelier, 2018). Additionally, recursive search could be stopped through the storage of immediate comparison results into two -dimensional array d[] [].

In conclusion, the time complexity for the pseudocode under consideration remains to be 
0 (i*j*k), which represents the number of rows, the columns in X, and the number of columns in Y respectively.
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